Emergence of continual directed flow in hamiltonian systems.

نویسندگان

  • D Hennig
  • A D Burbanks
  • C Mulhern
  • A H Osbaldestin
چکیده

We propose a minimal model for the emergence of a directed flow in autonomous hamiltonian systems. It is shown that internal breaking of the spatiotemporal symmetries, via localized initial conditions, which are unbiased with respect to the transporting degree of freedom, and transient chaos conspire to form the physical mechanism for the occurrence of a current. Most importantly, after passage through the transient chaos, trajectories perform solely regular transporting motion so that the resulting current is of continual ballistic nature. This has to be distinguished from the features of transport reported previously for driven hamiltonian systems with mixed phase space where transport is determined by intermittent behavior exhibiting power-law decay statistics of the duration of regular ballistic periods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowly rocking symmetric, spatially periodic Hamiltonians: The role of escape and the emergence of giant transient directed transport

The nonintegrable Hamiltonian dynamics of particles placed in a symmetric, spatially periodic potential and subjected to a periodically varying field is explored. Such systems can exhibit a rich diversity of unusual transport features. In particular, depending on the setting of the initial phase of the drive, the possibility of a giant transient directed transport in a symmetric, space-periodic...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Role of New Technologies in Medical Continual Training

Continual medical training has been regarded as necessary case for preserving and promoting skills of graduates of medicine on which basis continual curricula of medical society are being executed in order to promote job knowledge and skills and improve provision of health-therapeutic services in the country. Now, after some years of continual curricula commencement, this question about effe...

متن کامل

New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010